Error bounds for monomial convexification in polynomial optimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds for monomial convexification in polynomial optimization

Convex hulls of monomials have been widely studied in the literature, and monomial convexifications are implemented in global optimization software for relaxing polynomials. However, there has been no study of the error in the global optimum from such approaches. We give bounds on the worst-case error for convexifying a monomial over subsets of [0, 1]. This implies additive error bounds for rel...

متن کامل

Error Bounds for Polynomial Spline Interpolation

New upper and lower bounds for the L2 and Vo norms of derivatives of the error in polynomial spline interpolation are derived. These results improve corresponding results of Ahlberg, Nilson, and Walsh, cf. [1], and Schultz and Varga, cf. [5].

متن کامل

Error Bounds for Minimal EnergyBivariate Polynomial

We derive error bounds for bivariate spline interpolants which are calculated by minimizing certain natural energy norms. x1. Introduction Suppose we are given values ff(v)g v2V of an unknown function f at a set V of scattered points in IR 2. To approximate f, we choose a linear space S of polynomial splines of degree d deened on a triangulation 4 with vertices at the points of V. be the set of...

متن کامل

Monomial-wise optimal separable underestimators for mixed-integer polynomial optimization

In this paper we introduce a new method for solving box-constrained mixed-integer polynomial problems to global optimality. The approach, a specialized branch-and-bound algorithm, is based on the computation of lower bounds provided by the minimization of separable underestimators of the polynomial objective function. The underestimators are the novelty of the approach because the standard appr...

متن کامل

Error bounds for rank constrained optimization problems

This paper is concerned with the rank constrained optimization problem whose feasible set is the intersection of the rank constraint set R = { X ∈ X | rank(X) ≤ κ } and a closed convex set Ω. We establish the local (global) Lipschitzian type error bounds for estimating the distance from any X ∈ Ω (X ∈ X) to the feasible set and the solution set, respectively, under the calmness of a multifuncti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2018

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-018-1246-8